
Asymptotic x-ray scattering from highly mismatched epitaxial films

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 5047

(http://iopscience.iop.org/0953-8984/18/22/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 11:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/22
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 5047–5055 doi:10.1088/0953-8984/18/22/005

Asymptotic x-ray scattering from highly mismatched
epitaxial films

V M Kaganer1, A Shalimov2, J Bak-Misiuk2 and K H Ploog1

1 Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
2 Institute of Physics, Polish Academy of Sciences, aleja Lotników 32/46, 02-668 Warsaw, Poland

E-mail: kaganer@pdi-berlin.de

Received 17 January 2006
Published 16 May 2006
Online at stacks.iop.org/JPhysCM/18/5047

Abstract
We study x-ray diffraction peak profiles from highly mismatched relaxed
epitaxial films at momentum transfers exceeding the peak widths. Calculated
profiles for misfit dislocations are compared with triple-crystal diffraction
profiles from GaAs/Si(001) epitaxial films. We find that the longitudinal and
transverse scans have a common q−4 asymptote but approach it differently,
so that their profiles are qualitatively different in the experimentally available
momentum range. The possible contribution from threading dislocations is
estimated.

1. Introduction

X-ray diffraction is a well established tool to study various kinds of crystal lattice imperfections.
The lattice defects can be very generally divided into two classes [1]: localized defects (e.g.,
point defects and their clusters) that cause diffuse scattering around a sharp Bragg peak, and
extended defects (e.g., dislocations) that give rise to diffraction peak broadening. While defects
of the first class are commonly studied by measuring the diffuse intensity distribution to as
large as possible momentum transfers, the diffractometry studies of crystals with dislocations
are usually based on a comparison of the full widths at half maximum (FWHMs) of different
reflections.

The diffracted intensity in a dislocated crystal at large momentum transfers q (where q is
the deviation from the nearest Bragg point) is due to scattering in the close vicinity of each
dislocation line. The dislocation strain field decays as r−1, where r is the distance from
the dislocation line. Then, the differential cross-section of x-ray scattering behaves as q−5.
The x-ray diffraction measurements involve integrations over one or more components of the
momentum transfer q = |q| resulting in different power laws. In triple-crystal diffractometry,
the angular spectrum of the waves scattered by the sample is analysed. An analyser crystal
is used, providing a high resolution in the scattering plane. The vertical (normal to the
scattering plane) divergence of the scattered waves is not severely restricted, which gives rise
to an integration over one component of the three-dimensional vector q and results in the
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q−4 dependence. In double-crystal diffractometry, a wide range of waves scattered by the
sample is collected by the detector. Since x-ray diffraction is an elastic scattering process,
the wavevectors of all scattered waves end at a common sphere (the Ewald sphere), so that
an integration over two components of the vector q is performed, resulting in the q−3 law.
A similar integration is realized in a powder diffraction experiment, due to the summation
of intensities scattered by differently oriented crystallites. The same q−3 law, albeit with a
different prefactor depending on the diffraction geometry, is realized [1–3]. The q−3 law has
been experimentally verified in powder diffraction studies of metals [4, 5]. Measurements on
single crystalline GaN epitaxial films with large densities of threading dislocations show both
q−3 and q−4 laws, depending on the diffraction mode, double or triple crystal, respectively [6].

X-ray scattering at large momentum transfers originates from the sample regions close to
each dislocation line. It follows the universal asymptotic laws described above because of the
universal (∝ r−1) decay of the dislocation strain. The scattering from all dislocation lines is
added up, and the scattered intensity in the asymptotic region is proportional to the total length
of the dislocation lines in the sample. Here, we do not consider the higher-order corrections to
these power laws that originate from the dislocation correlations [3, 4]. Krivoglaz noted that
a measurement in the asymptotic region would be the most straightforward way to obtain the
dislocation density (see [1]), but in his time the available x-ray equipment was insufficient for
such a kind of experiments. Nowadays, ordinary laboratory x-ray diffractometers allow us to
perform such studies.

The aim of the present work is to study the profiles of x-ray diffraction peaks from highly
mismatched epitaxial films at momentum transfers q larger than the FWHMs of the peaks.
This asymptotic scattering was studied in powders [3–5] and in only one epitaxial system, GaN
films with a high threading dislocation density [6]. Our intention is to evaluate the asymptotic
scattering from a heteroepitaxial system with misfit dislocations. We show that the approach
proposed earlier to calculate diffraction peak profiles from misfit dislocations [7] can be directly
extended to the asymptotic region. We also estimate the effects that can arise from correlations
between dislocation positions, and an additional contribution from threading dislocations. We
compare our calculations to measurements on GaAs/Si(001) films. The films contain, after
rapid thermal annealing, periodic arrays of edge misfit dislocations coexisting with random 60◦
dislocations [8, 9]. The periodic dislocation array is not visible in our study, since it causes
non-uniform distortions only in a very narrow range close to the interface [10]. We find that the
observed diffraction peaks are well described, being due to a line density ρM = 3.2×105 cm−1

of random 60◦ misfit dislocations.

2. Theory

The x-ray intensity scattered from an epitaxial film disturbed by crystal lattice defects can be
represented in the kinematical approximation as

I (q) =
∫ ∫

exp[iq · (r − r′)] exp[−T (r, r′)] dr dr′. (1)

Here exp[−T (r, r′)] is the pair correlation function. In a film, the translational symmetry is
broken in the surface normal direction (the distance from the surface to points r, r′ plays a
role) and we cannot write T (r − r′), as in the case of a uniform infinite system. In strongly
distorted crystals, only closely spaced points r, r′ are correlated and the calculation of the
correlation function can be simplified by the approximation of the relative displacements
Q · [u(r) − u(r′)] by distortions ∂(Q · u)/∂r [1]. Here, Q is the reciprocal lattice vector
and u(r) is the displacement field of a defect.
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The calculation of the correlation function for misfit dislocations randomly distributed at
the interface between the epitaxial film and the substrate gives [7]

T (x, ζ, z) = wxx (z)x2 + 2wxz(z)xζ + wzz(z)ζ
2, (2)

where x is the distance along the interface between the two points whose correlations are
studied, ζ = z − z ′ is the distance between these points normal to the surface normal, and
z is the coordinate along the surface normal. The coefficients wi j (z) (here i, j = x, z) are
expressed through integrals over distortions [7]. Here we reproduce only one of them to show
the structure of these expressions:

wxx (z) = ρM

2

∫ ∞

−∞
[Q2

x(u
(x)2
x,x + u(z)2

x,x ) + Q2
z (u

(x)2
z,x + u(z)2

z,x )] dx, (3)

where ρM is the linear density of misfit dislocations, u(x)
i, j (x, z) = ∂u(x)

i /∂x j are the distortions

due to a dislocation with the Burgers vector b = (bx, 0, 0) and u(z)
i, j are the corresponding

distortions for b = (0, 0, bz). The calculations are applied to the low-energy dislocations
in the zinc-blende structure, namely, the 60◦ dislocations. Their Burgers vectors make an
angle of 60◦ to the dislocation line directions, so that all misfit dislocations have the same
mismatch-releasing component bx and equal probabilities of the components ±bz . This ensures
the absence of cross-terms in (3).

The analytical formulae for the displacement fields of dislocations lying parallel to a
free surface of an elastically isotropic semispace are known (see appendix B in [7]) and the
integrals (3) can be evaluated analytically. The resulting expressions are quite bulky and we
reproduce only the first term in (3), to show its structure:

b−2
x

∫ ∞

−∞
u(x)2

x,x dx = (2 − 2α + α2)

16π(d − z)
+ (2 − 2α + α2)

16π(d + z)
+ α[(2 − α)d2 − αdz + 2αz2]

8πd3

− dz[(2 − α2)d2 + 2(2 − 3α − α2)dz + (2 − 6α + 5α2)z2]
8π(d + z)5

. (4)

Here α = 1/[2(1 − ν)], where ν is the Poisson ratio, d is the film thickness, and the origin
z = 0 is taken at the free surface. The first two terms in (4) are due to the displacement field of
a dislocation in an infinite crystal and its image with respect to the surface, while further terms
are due to the surface relaxation term and the cross products. All coefficients wi j(z) in (2) can
be represented by analytical expressions similar to (4).

Integration in (1) with the correlation function (2) is performed analytically over x and
ζ , since the corresponding integrals are just Fourier transforms of Gaussian functions, which
gives

I (qx , qz) =
∫ d

0

dz√
det ŵ

exp

(
−1

4
w−1

i j qi q j

)
, (5)

where ŵ is a 2×2 symmetrical matrix with the elements wi j(z) and w−1
i j are the elements of the

reciprocal matrix. The diffracted intensity calculations based on equation (5) were performed
in [7] with the aim to obtain FWHMs of the peaks. For that purpose, it was sufficiently accurate
to replace the wi j(z) by their values at the surface z = 0, i.e., take wi j(0) in equation (5). Then,
I (qx , qz) is an anisotropic Gaussian distribution. This approximation is not suitable for the
purposes of the present paper, since our aim is to study the intensity distribution I (qx , qz)

for q much larger than the FWHM of the peak. Hence, we use equation (5) and perform the
integration over z numerically.

Figure 1(a) shows intensity distributions calculated by equation (5) for a symmetric 004
reflection. The misfit dislocation density is taken as ρMd = 64, to have the same scale as
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Figure 1. Calculated x-ray diffraction peak profiles of longitudinal (ω–2θ ) and transverse (ω)
scans for a symmetric 004 reflection. Full lines in (a)–(c) show the curves for uncorrelated misfit
dislocations with density ρMd = 64. The thin line in (a) shows scattering from a perfect film.
Dashed lines present (b) correlated misfit dislocations with density γρMd = 64 and correlation
range Rc = 0.05d, and (c) threading dislocations with density ρTd2 = 4.

in the experiments presented in the next section. We compare the standard scans of triple-
crystal diffractometry, an ω scan (transverse scan, q is perpendicular to Q) and an ω–2θ scan
(longitudinal scan, q is along Q). The intensity from a perfect film in the longitudinal scan,
I (q) = sin2(qd/2)/(qd/2)2, is also shown for comparison. Both the longitudinal and the
transverse scans from the dislocated film reach the expected q−4 asymptotic law for large q .
However, this asymptote is reached only after the intensity decreases by at least four orders
of magnitude from the peak value. The longitudinal and transverse scans show qualitatively
different behaviour in the intermediate q range. In the longitudinal scan, the exponent is
smaller than −4 and continuously increases. In contrast, in the transverse scan, the peak is
much broader and the intensity decays much steeper in this intermediate q range. The first four
orders in intensity are in fact the experimentally available range, so that the pure q−4 asymptotic
law may not be reached in the experimental scans at all. A notably steeper intensity decrease in
the transverse scan for that q range could be erroneously treated as another asymptotic law for
the transverse direction. A comparison with the experimental peak profiles in the next section
confirms these conclusions.

The calculations above assume a random uniform distribution of uncorrelated misfit
dislocations. However, one can expect that the dislocations are positionally correlated to
minimize the elastic energy. The positional correlations between dislocations can be described
quite easily if the corresponding correlation length Rc is small and Rc � d [7]. Then, the
correlations can be characterized by a single scalar parameter γ . It is defined through mean
square fluctuations of the number of dislocations, γ = 〈(
N)2〉/N , where N is the number
of dislocations in some interval and 
N is its random variation. Positionally uncorrelated
dislocations can be treated as an ideal gas where fluctuations are 〈(
N)2〉 = N , so that γ = 1.
Positions of correlated dislocations correspond to a liquid, where distances between particles
only slightly deviate from the mean distance and 〈(
N)2〉 < N , so that γ < 1. We do not
consider here the case of periodic dislocations, where it is not sufficient to consider only pair
correlations. The effect of pair correlations on the equations above is to replace the true density
of misfit dislocations ρM by γρM. This approximation is valid as long as q is smaller than R−1

c .
As q approaches this value, the intensity increases, since the dislocations are effectively less
correlated. Hence, the measurement of the diffracted intensity distribution in a wide enough q
range allows us to investigate the range of correlations between misfit dislocations.

The effect of pair correlations between dislocations on the correlation function (2) was
considered in [7]. In the calculation of the coefficients wi j(z), the square of the distortion in
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equation (3), u2
i, j (x, z), has to be replaced by a product of distortions taken at two points x and

x ′, convolved with the correlation function g(x −x ′). For example, the first term in equation (3)
becomes ∫ ∫ ∞

−∞
u(x)

x,x (x, z)u(x)
x,x (x ′, z)g(x − x ′) dx dx ′. (6)

More generally, different correlation functions can be introduced for dislocations with one and
the same and with different Burgers vectors [7]. If correlations are absent, one has g(x) = δ(x),
where δ(x) is the delta function. Correlations give rise to g(x) = δ(x) − g′(x), where the
function g′(x) has a characteristic width Rc and possesses the normalization

∫ ∞
−∞ g′(x) dx =

1 − γ . An effective way to calculate the integral (6) is to perform a Fourier transformation and
obtain ∫ ∞

−∞
u(x)2

x,x (κ, z)g(κ) dκ. (7)

The Fourier transformation of the distortions can be performed analytically; for example, for
the distortion component in (7) it is

u(x)
x,x (κ, z) = −bx

2

{[1 − ακ(d − z)]e−κ(d−z) + [1 − (2 − α)κd + ακz(2κd − 1)]e−κ(d+z)
}
.

(8)

The integral (7) remains to be calculated numerically.
Figure 1(b) shows the effect of the finite correlation range Rc on the the asymptotic

scattering. We take γ = 0.16 and a larger dislocation density, ρMd = 400, so that the product
γρMd = 64 remains the same as for uncorrelated dislocations in figure 1(a). The full lines
in figure 1(b), coinciding with the ones in figure 1(a), can also be considered as being due to
correlated dislocations with values of γ and ρM as given above, and with a negligibly small
correlation range, Rc = 0. To investigate the effect of the finite correlation range, we use an
exponential correlation function, g′(x) = (1 − γ )R−1

c exp(−x/Rc), with a correlation length
Rc = 0.05d . The finite correlation range Rc does not influence the FWHMs of the peaks, since
the condition Rc � d is satisfied. The asymptotic scattering intensity increases: for q 	 R−1

c it
corresponds to uncorrelated misfit dislocations with the linear density ρM, to be compared with
the effective density γρM that determines the peak width. Hence, for the momentum q 	 R−1

c ,
the scattered intensity is 1/γ times larger compared with figure 1(a). Thus, the asymptotic
scattering can be used to obtain the correlation range Rc for positional correlations of misfit
dislocations.

Some misfit dislocations continue as inclined segments that penetrate through the film to
the surface. These segments are called threading dislocations. A large density of threading
dislocations normal to the surface is typical for GaN epitaxial films. Their effect on the x-ray
diffraction peaks can be analysed, similar to the treatment of misfit dislocations above [6]. For
III–V semiconductors, threading dislocations degrade the electronic device performance, so
that their density should be minimized. An accurate calculation of their effect on the x-ray
peaks is much more difficult than for misfit dislocations for several reasons. First, the mean
distance between threading dislocations in III–V semiconductors is comparable to or even
larger than the film thickness, so that the approximation of the difference of displacements
by distortions when calculating the correlation function T (r, r′) in equation (1) is not valid.
Secondly, threading dislocations in III–V semiconductors belong to the same type 1

2 〈110〉{101}
of glide systems as the misfit dislocations. They are 60◦ dislocations (i.e., the Burgers vectors
make an angle of 60◦ with the dislocation lines) inclined to the surface and are only present as
finite segments of the dislocation lines in the film. One needs to calculate the displacement field
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of a finite segment of a dislocation line inclined to the surface, which is a fairly complicated
elastic problem [11]. So, here we only estimate the effect of the threading dislocations on the
diffraction peaks, to compare it with the effect of misfit dislocations.

If the density of threading dislocations ρT is large enough (the mean distance between
dislocations ρ

−1/2
T is small compared to the film thickness d), the correlation function T (r, r′)

can be written as (see discussion and references in [6])

T (r, r′) = (Qb)2

4π
fρTs2 ln

(
2π

Qb

L

s

)
. (9)

Here, s = ∣∣r − r′∣∣ is the distance between points where the correlation is probed and f is
a factor of order unity that depends on the relative orientations of all vectors in the problem:
the dislocation line direction, the Burgers vector b, the diffraction vector Q, and the vector
r − r′. The calculation of this factor is a difficult task, as discussed above. The distance L is
a characteristic screening distance of the dislocation strain fields by either other dislocations
or boundaries. For the problem under consideration, it is reasonable to take it equal to the
film thickness, L = d . The s2 dependence in (9) gives after Fourier transformation (1) a
Gaussian peak profile for q comparable to the FWHM of the peak. The logarithmic term can
be approximated by a constant in this range of q . However, in the asymptotic region of large q
the logarithmic term provides the power law.

Expression (9) cannot be used for s > L. In the numerical Fourier transformation, a rigid
upper integration limit causes unphysical oscillations. They can be avoided by replacing L/s in
the logarithm of (9) with (L + s)/s [6]. To describe the scattered intensity in the triple crystal
diffraction geometry, we integrate (1) over the vertical divergence of the scattered waves and
then over the azimuthal angle of the vector s = r − r′, assuming f to be constant. Then, the
diffracted intensity can be represented by a one-dimensional integral

I (q) =
∫ ∞

0
exp[−T (s)]J0(s)s ds, (10)

where J0(s) is the Bessel function. Figure 1(c) presents with a dashed line the peak profile
calculated by equations (9) and (10) for a threading dislocation density ρTd2 = 4. We expect a
rather isotropic intensity distribution after averaging over all relevant dislocation glide systems,
so that we set the orientation factor in equation (9) to f = 1. Accordingly, only one curve is
shown in figure 1(c). The same q−4 asymptotic law as for misfit dislocations is obtained. The
slope at intermediate q is somewhat in between those for longitudinal and transverse scans of
misfit dislocations. Figure 1(c) shows that misfit and threading dislocations have similar effects
on the diffraction peak profiles, so that it may be difficult to distinguish them. In the analysis
of the experimental profiles below, we therefore decide in favour of misfit dislocations, based
on a perfect fit of the FWHMs of both longitudinal and transverse scans in various asymmetric
reflections by equation (5).

The threading dislocation density ρT is a density per unit area, defined as the total length
of the dislocation lines per unit volume or, equivalently, a number of dislocation lines crossing
a unit area in the plane perpendicular to the lines. The misfit dislocation density ρM is a density
per unit length, defined as a total length of dislocation lines per unit area of the interface or,
equivalently, a number of dislocations crossing a line along the interface perpendicular the
dislocations. The dimensionless quantities to be compared by their effects on the diffraction
peak width are ρTd2 and ρMd . One may need to use γρMd instead of the latter quantity to
take into account correlations between misfit dislocations. The effect of correlations between
threading dislocations is estimated by the screening length L in (9). We note that, for misfit
dislocations, the strain field screening is already provided by the surface elastic relaxation
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terms, see for example equation (8). Hence, an approximation of the screening length L for
threading dislocations by the film thickness d seems reasonable.

3. Experimental results and discussion

We have studied 2 µm thick GaAs epitaxial films grown by molecular beam epitaxy on vicinal
Si(001) [8, 9]. X-ray measurements were carried out with a high-resolution Philips X’Pert
Material Research Diffractometer using a four-bounce asymmetric Ge(220) monochromator, a
three-bounce Ge(220) analyser, and Cu Kα1 radiation. We have studied a series of samples
with miscut directions [110] and [11̄0] and miscut angles varying from 0.5◦ to 7.5◦. The
diffraction measurements performed both along and perpendicular to the miscut direction did
not reveal any dependence of the measured curves on the miscut angle or orientation. Hence,
the antiphase domains inherent to the GaAs/Si(001) system [12] do not influence the diffraction
peaks. The measurement of the diffraction peak positions in symmetric 004 and asymmetric
224 reflections confirms that the GaAs films are fully relaxed, due to a 4% lattice mismatch to
the substrate.

The transmission electron microscopy (TEM) measurements [9] showed that, after rapid
thermal annealing of the sample, the major part of the mismatch is released by a periodic
network of edge misfit dislocations. Periodic edge dislocations coexist with random 60◦
dislocations, with the density of 60◦ dislocations found to be from 3% to 11% in the samples
investigated by TEM. A periodic dislocation array produces nonuniform strain only in a layer
with a thickness smaller than the distance between dislocations [10]. With a dislocation
distance of 9 nm, the thickness of this disturbed layer is negligible compared to the GaAs film
thickness of 2 µm. Hence, the scattering that we study is due to random 60◦ misfit dislocations.
The TEM measurements also reveal threading dislocations with a density ρT = 2 × 108 cm−2,
so that the dimensionless density ρTd2 = 8.

Figures 2(a) and (b) present with bold grey lines longitudinal (ω–2θ ) and transverse (ω)
x-ray diffraction scans of different symmetric and asymmetric reflections. Diffraction satellites
due to a periodic network of edge misfit dislocations are not seen, although their positions
would have to be within the q-range of figures 2(a) and (b): with a network period of p = 9 nm,
the first satellite was located at qd = (2π/p)d = 700. The satellites are not detected in
our measurements since their intensity is too low. Figure 2(c) shows that the effect of the
instrumental resolution is negligible: the widths of the 004 diffraction peaks from a perfect
Si crystal in transverse and longitudinal scans are 50 and 5.4 times, respectively, smaller than
the ones from the GaAs film. We present the instrumental peaks separately since they are not
visible in the scale of figures 2(a) and (b).

The observed peaks are fitted to the model of uncorrelated 60◦ misfit dislocations described
above by using just one fit parameter, their density ρM. The thin lines in figures 2(a) and (b)
are calculated by using equation (5) with one and the same value ρMd = 64 for all reflections
and all scans. The experimental background intensity is added to equation (5). In this way, we
can also use for example the 117 reflection, where the dynamical range of available intensities
is relatively small and the asymptote is not evident from the plot. The FWHMs of all peaks are
fitted very well. We conclude that the random misfit dislocations are the main source of the
peak broadening. Their linear density is ρM = 64/d = 3.2 × 105 cm−1. If we assume that the
remaining mismatch is released by periodic edge dislocations, we obtain the fraction of random
60◦ dislocations as 26% of the total misfit dislocation density. Here we take into account that
the Burgers vector component in the interfacial plane is two times larger for edge dislocations.
This fraction is larger than the fraction of 60◦ dislocations obtained by TEM [9]. Our study of
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Figure 2. ((a), (b)) Triple crystal x-ray diffraction peak profiles from GaAs/Si(001) epitaxial films
(thick grey lines) and calculated profiles (thin black lines) in longitudinal and transverse scans of
different reflections and (c) comparison of the peak profiles in 004 reflection from the film (thick
grey lines) and from an ideal Si crystal (thin black lines).

FWHMs of the x-ray diffraction peaks on a series of the GaAs/Si(001) samples, to be presented
elsewhere, shows that the fraction of 60◦ dislocations varies in different samples from 9% to
26%, in an agreement with the TEM results.

All longitudinal scans are fitted well in the whole measured q range, spanning more than
four orders of magnitude in intensity. Hence, if the 60◦ dislocations are correlated on small
distances, the correlation length Rc for positional correlations should be very small. The
intensity distributions follow the q−4 asymptotic law up to at least qd ∼ 400, which gives
an estimate for the upper bound Rc < (2π/400)d ≈ 30 nm, which coincides with the mean
distance between misfit dislocations 1/ρM ≈ 30 nm. This means that the 60◦ dislocations are
not correlated.

The q dependence of intensity in transverse scans is steeper than q−4. This behaviour
agrees with the profiles calculated for misfit dislocations in figure 1(a). However, a quantitative
comparison in figure 2 shows that the observed intensity is larger than the calculated one
in the asymptotic region. The deviations are most pronounced in the 004, 115, and 224
reflections. This additional intensity cannot be attributed to the finite range of positional
correlations between misfit dislocations. We have seen in figure 1(b) that such an effect
would cause an equal intensity increase in both longitudinal and transverse scans. Threading
dislocations also seem improbable as a source of this additional intensity, since they would
cause additional broadening of the diffraction peaks with different ratios of FWHMs in the
longitudinal and transverse scans. The peak FWHMs in all reflections and all scans could
not be fitted together, as is done for the misfit dislocations alone. However, since an accurate
quantitative description of the threading dislocations is not yet done, an univocal conclusion
about the effect of threading dislocations cannot be reached at this time. The model developed
above predicts a steeper intensity decay in the transverse scan than the one observed, which may
be the result of the approximations made. In particular, the approximation of elastic isotropy
for the dislocation distortion field may not be sufficient.
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4. Conclusions

X-ray scattering from dislocation strain fields gives rise (in a triple-crystal diffraction geometry)
to an asymptotic q−4 law for scattered intensity at large momentum transfers q . Misfit
dislocations reveal this asymptote when the intensity decreases by four orders of magnitude
from the peak value. In the intermediate q range, the intensities in longitudinal and transverse
scans behave differently. In the longitudinal scans, the exponent continuously increases and
finally reaches the value −4. The transverse scans show a steeper slope in the intermediate q
range. Positional correlations between misfit dislocations result in narrower peaks, while the
finite range of their correlations result in an intensity increase in the asymptotic q region. The
effect of threading dislocations on the diffraction peak profiles is qualitatively similar to the
effect of misfit dislocations. A quantitative description of their contribution, however, seems to
be a notably more complicated problem.

We compare the calculated profiles with measurements on GaAs/Si(001) epitaxial films.
We find that the FWHMs of both longitudinal and transverse scans in different symmetric
and asymmetric reflections can be fitted by the model of random uncorrelated 60◦ misfit
dislocations, and obtain the linear dislocation density ρM = 3.2 × 105 cm−1 from the fit. The
longitudinal scans in all reflections are perfectly described by the model of misfit dislocations
in the whole measured range of q . This allows us to conclude that the 60◦ misfit dislocations
are not correlated even on small distances. In transverse scans, a steeper intensity decay is
observed, in agreement with the calculations. Experimental intensities exceeding the calculated
ones in the asymptotic region of the transverse scan possibly point to limitations of the model.
We conclude that the effect of threading dislocations on the diffraction peaks is negligible,
since they generally lead to different FWHM ratios than the misfit dislocations. Thus, x-ray
diffraction peak profiles from relaxed highly mismatched epitaxial films provide much more
detailed information on dislocation distributions than just peak widths.

Acknowledgments

We thank A Georgiaklilas for sample preparation and M Calamiotou for fruitful discussions.
This work was partially supported by the European Community programme G1MA–CT–2002–
4017 (Centre of Excellence CEPHEUS) and by the Polish Committee for Scientific Research
under grant No P03B11528.

References

[1] Krivoglaz M A 1996 X-Ray and Neutron Diffraction in Nonideal Crystals (Berlin: Springer)
[2] Wilkens M 1963 Phys. Status Solidi 3 1718
[3] Groma I 1998 Phys. Rev. B 57 7535
[4] Groma I 2000 J. Appl. Crystallogr. 33 1329
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